Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009920

RESUMO

Poales are one of the most species-rich, ecologically and economically important orders of plants and often characterise open habitats, enabled by unique suites of traits. We test six hypotheses regarding the evolution and assembly of Poales in open and closed habitats throughout the world, and examine whether diversification patterns demonstrate parallel evolution. We sampled 42% of Poales species and obtained taxonomic and biogeographic data from the World Checklist of Vascular Plants database, which was combined with open/closed habitat data scored by taxonomic experts. A dated supertree of Poales was constructed. We integrated spatial phylogenetics with regionalisation analyses, historical biogeography and ancestral state estimations. Diversification in Poales and assembly of open and closed habitats result from dynamic evolutionary processes that vary across lineages, time and space, most prominently in tropical and southern latitudes. Our results reveal parallel and recurrent patterns of habitat and trait transitions in the species-rich families Poaceae and Cyperaceae. Smaller families display unique and often divergent evolutionary trajectories. The Poales have achieved global dominance via parallel evolution in open habitats, with notable, spatially and phylogenetically restricted divergences into strictly closed habitats.

2.
Proc Natl Acad Sci U S A ; 119(22): e2112737119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617436

RESUMO

Tropical alpine floras are renowned for high endemism, spectacular giant rosette plants testifying to convergent adaptation to harsh climates with nightly frosts, and recruitment dominated by long-distance dispersal from remote areas. In contrast to the larger, more recent (late Miocene onward) and contiguous expanses of tropical alpine habitat in South America, the tropical alpine flora in Africa is extremely fragmented across small patches on distant mountains of variable age (Oligocene onward). How this has affected the colonization and diversification history of the highly endemic but species-poor afroalpine flora is not well known. Here we infer phylogenetic relationships of ∼20% of its species using novel genome skimming data and published matrices and infer a timeframe for species origins in the afroalpine region using fossil-calibrated molecular clocks. Although some of the mountains are old, and although stem node ages may substantially predate colonization, most lineages appear to have colonized the afroalpine during the last 5 or 10 My. The accumulation of species increased exponentially toward the present. Taken together with recent reports of extremely low intrapopulation genetic diversity and recent intermountain population divergence, this points to a young, unsaturated, and dynamic island scenario. Habitat disturbance caused by the Pleistocene climate oscillations likely induced cycles of colonization, speciation, extinction, and recolonization. This study contributes to our understanding of differences in the histories of recruitment on different tropical sky islands and on oceanic islands, providing insight into the general processes shaping their remarkable floras.


Assuntos
Mudança Climática , Plantas , África Oriental , Ecossistema , Variação Genética , Humanos , Ilhas , Plantas/anatomia & histologia , Plantas/genética , População
3.
Syst Biol ; 71(1): 190-207, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33978764

RESUMO

Target enrichment is becoming increasingly popular for phylogenomic studies. Although baits for enrichment are typically designed to target single-copy genes, paralogs are often recovered with increased sequencing depth, sometimes from a significant proportion of loci, especially in groups experiencing whole-genome duplication (WGD) events. Common approaches for processing paralogs in target enrichment data sets include random selection, manual pruning, and mainly, the removal of entire genes that show any evidence of paralogy. These approaches are prone to errors in orthology inference or removing large numbers of genes. By removing entire genes, valuable information that could be used to detect and place WGD events is discarded. Here, we used an automated approach for orthology inference in a target enrichment data set of 68 species of Alchemilla s.l. (Rosaceae), a widely distributed clade of plants primarily from temperate climate regions. Previous molecular phylogenetic studies and chromosome numbers both suggested ancient WGDs in the group. However, both the phylogenetic location and putative parental lineages of these WGD events remain unknown. By taking paralogs into consideration and inferring orthologs from target enrichment data, we identified four nodes in the backbone of Alchemilla s.l. with an elevated proportion of gene duplication. Furthermore, using a gene-tree reconciliation approach, we established the autopolyploid origin of the entire Alchemilla s.l. and the nested allopolyploid origin of four major clades within the group. Here, we showed the utility of automated tree-based orthology inference methods, previously designed for genomic or transcriptomic data sets, to study complex scenarios of polyploidy and reticulate evolution from target enrichment data sets.[Alchemilla; allopolyploidy; autopolyploidy; gene tree discordance; orthology inference; paralogs; Rosaceae; target enrichment; whole genome duplication.].


Assuntos
Alchemilla , Rosaceae , Evolução Molecular , Duplicação Gênica , Filogenia , Poliploidia
4.
BMC Evol Biol ; 19(1): 222, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805850

RESUMO

BACKGROUND: The coincidence of long distance dispersal (LDD) and biome shift is assumed to be the result of a multifaceted interplay between geographical distance and ecological suitability of source and sink areas. Here, we test the influence of these factors on the dispersal history of the flowering plant genus Erica (Ericaceae) across the Afrotemperate. We quantify similarity of Erica climate niches per biogeographic area using direct observations of species, and test various colonisation scenarios while estimating ancestral areas for the Erica clade using parametric biogeographic model testing. RESULTS: We infer that the overall dispersal history of Erica across the Afrotemperate is the result of infrequent colonisation limited by geographic proximity and niche similarity. However, the Drakensberg Mountains represent a colonisation sink, rather than acting as a "stepping stone" between more distant and ecologically dissimilar Cape and Tropical African regions. Strikingly, the most dramatic examples of species radiations in Erica were the result of single unique dispersals over longer distances between ecologically dissimilar areas, contradicting the rule of phylogenetic biome conservatism. CONCLUSIONS: These results highlight the roles of geographical and ecological distance in limiting LDD, but also the importance of rare biome shifts, in which a unique dispersal event fuels evolutionary radiation.


Assuntos
Ericaceae/genética , África , Animais , Evolução Biológica , Clima , Ecologia , Ecossistema , Ericaceae/classificação , Geografia , Filogenia
5.
PhytoKeys ; (96): 111-125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706788

RESUMO

Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like) climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments - at least tropical ones - are species sinks.

6.
Am J Bot ; 103(8): 1483-98, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27555436

RESUMO

PREMISE OF THE STUDY: Floras of continental habitat islands, like those of islands, originate mostly through colonization, which can be followed by in situ speciation. We here address the question of the relative importance of colonization and in situ diversification in the high-altitude areas of the eastern African high mountains, the tropical Afroalpine Region, using the most species-rich genus in the region, Senecio, as an example. METHODS: We expanded earlier Senecioneae phylogenies by adding more tropical African species and analyzed our phylogenetic tree biogeographically. KEY RESULTS: Senecio contains at least five clades with tropical African species, all of them containing tropical afroalpine species. Between four to 14 independent colonization events into the tropical Afroalpine most likely from montane regions in southern Africa were found. Additionally, relationships of tropical afroalpine species to Palearctic and South American taxa were identified. Although some in situ diversification occurred in Senecio in the tropical Afroalpine, the resulting number of species per clade is never higher than seven. CONCLUSION: Like other genera, Senecio colonized the tropical Afroalpine several times independently. Comparison with Mt. Kinabalu, a small tropical alpine-like region in Southeast Asia, and alpine-like regions in the Andes implies that rates of in situ speciation might be linked to area size.


Assuntos
Especiação Genética , Filogenia , Senécio/genética , África Oriental , DNA de Plantas/genética , Filogeografia , Senécio/classificação , Análise de Sequência de DNA
7.
Ann Bot ; 117(1): 121-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26520565

RESUMO

BACKGROUND AND AIMS: Alpine and arctic environments worldwide, including high mountains, are dominated by short-stature woody plants (dwarf shrubs). This conspicuous life form asserts considerable influence on local environmental conditions above the treeline, creating its own microhabitat. This study reconstructs the evolution of dwarf shrubs in Alchemilla in the African tropical alpine environment, where they represent one of the largest clades and are among the most common and abundant plants. METHODS: Different phylogenetic inference methods were used with plastid and nuclear DNA sequence markers, molecular dating (BEAST and RelTime), analyses of diversification rate shifts (MEDUSA and BAMM) and ancestral character and area reconstructions (Mesquite). KEY RESULTS: It is inferred that African Alchemilla species originated following long-distance dispersal to tropical East Africa, but that the evolution of dwarf shrubs occurred in Ethiopia and in tropical East Africa independently. Establishing a timeframe is challenging given inconsistencies in age estimates, but it seems likely that they originated in the Pleistocene, or at the earliest in the late Miocene. The adaptation to alpine-like environments in the form of dwarf shrubs has apparently not led to enhanced diversification rates. Ancestral reconstructions indicate reversals in Alchemilla from plants with a woody base to entirely herbaceous forms, a transition that is rarely reported in angiosperms. CONCLUSIONS: Alchemilla is a clear example of in situ tropical alpine speciation. The dwarf shrub life form typical of African Alchemilla has evolved twice independently, further indicating its selective advantage in these harsh environments. However, it has not influenced diversification, which, although recent, was not rapid.


Assuntos
Alchemilla/fisiologia , Evolução Biológica , Ecossistema , África , Variação Genética , Geografia , Filogenia , Análise de Sequência de DNA , Temperatura
8.
BMC Evol Biol ; 15: 80, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25944090

RESUMO

BACKGROUND: Our aim is to understand the evolution of species-rich plant groups that shifted from tropical into cold/temperate biomes. It is well known that climate affects evolutionary processes, such as how fast species diversify, species range shifts, and species distributions. Many plant lineages may have gone extinct in the Northern Hemisphere due to Late Eocene climate cooling, while some tropical lineages may have adapted to temperate conditions and radiated; the hyper-diverse and geographically widespread genus Hypericum is one of these. RESULTS: To investigate the effect of macroecological niche shifts on evolutionary success we combine historical biogeography with analyses of diversification dynamics and climatic niche shifts in a phylogenetic framework. Hypericum evolved cold tolerance c. 30 million years ago, and successfully colonized all ice-free continents, where today ~500 species exist. The other members of Hypericaceae stayed in their tropical habitats and evolved into ~120 species. We identified a 15-20 million year lag between the initial change in temperature preference in Hypericum and subsequent diversification rate shifts in the Miocene. CONCLUSIONS: Contrary to the dramatic niche shift early in the evolution of Hypericum most extant species occur in temperate climates including high elevations in the tropics. These cold/temperate niches are a distinctive characteristic of Hypericum. We conclude that the initial release from an evolutionary constraint (from tropical to temperate climates) is an important novelty in Hypericum. However, the initial shift in the adaptive landscape into colder climates appears to be a precondition, and may not be directly related to increased diversification rates. Instead, subsequent events of mountain formation and further climate cooling may better explain distribution patterns and species-richness in Hypericum. These findings exemplify important macroevolutionary patterns of plant diversification during large-scale global climate change.


Assuntos
Evolução Biológica , Hypericum/classificação , Hypericum/genética , Mudança Climática , Temperatura Baixa , Fósseis , Hypericum/fisiologia , Filogenia
9.
Mol Phylogenet Evol ; 58(1): 4-21, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21078403

RESUMO

Ranunculus is distributed in all continents and especially species-rich in the meridional and temperate zones. To reconstruct the biogeographical history of the genus, a molecular phylogenetic analysis of the genus based on nuclear and chloroplast DNA sequences has been carried out. Results of biogeographical analyses (DIVA, Lagrange, Mesquite) combined with molecular dating suggest multiple colonizations of all continents and disjunctions between the northern and the southern hemisphere. Dispersals between continents must have occurred via migration over land bridges, or via transoceanic long-distance dispersal, which is also inferred from island endemism. In southern Eurasia, isolation of the western Mediterranean and the Caucasus region during the Messinian was followed by range expansions and speciation in both areas. In the Pliocene and Pleistocene, radiations happened independently in the summer-dry western Mediterranean-Macaronesian and in the eastern Mediterranean-Irano-Turanian regions, with three independent shifts to alpine humid climates in the Alps and in the Himalayas. The cosmopolitan distribution of Ranunculus is caused by transoceanic and intracontinental dispersal, followed by regional adaptive radiations.


Assuntos
Filogeografia , Ranunculus/classificação , Ranunculus/fisiologia , Biodiversidade , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Ecossistema , Evolução Molecular , Modelos Teóricos , Ranunculus/genética
10.
Mol Phylogenet Evol ; 56(1): 380-92, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20363346

RESUMO

Incongruence between gene trees, even within genomes, is often the result of hybridization and/or other processes such as incomplete lineage sorting, and can cause problems for phylogenetic analyses. We show here that the radiation of the Cyperaceae genus Schoenoxiphium involved at least one hybridization event with a closely related species of Carex, as indicated by a recombinant nuclear ITS region shared by all species in the S. rufum clade and C. camptoglochin. Recombinant sequences were confirmed with cloning experiments and recombination analyses. The monophyly of Schoenoxiphium has, in previous analyses, been suspected but not sufficiently supported, possibly due in part to this problem. Our phylogenetic analyses include an appropriate representation of Schoenoxiphium and other related Cariceae species and an extended sampling of the nuclear ITS and plastid marker regions, trnLF and rps16. We demonstrate that Schoenoxiphium is monophyletic, nested within Carex, and that several supported clades exist in Schoenoxiphium.


Assuntos
Cyperaceae/genética , Evolução Molecular , Hibridização Genética , Filogenia , Teorema de Bayes , Núcleo Celular/genética , Cyperaceae/classificação , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Recombinação Genética , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Am J Bot ; 97(7): e65-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21616856

RESUMO

PREMISE OF THE STUDY: We present a rapid and inexpensive alternative to DNA isolation for polymerase chain reaction (PCR) amplification from plants. • METHODS AND RESULTS: The method involves direct PCR amplification from material macerated in one buffer, followed by dilution and incubation in a second buffer. We describe the procedure and demonstrate its application for nuclear and plastid DNA amplification across a broad range of vascular plants. • CONCLUSIONS: The method is fast, easy to perform, cost-effective, and consequently ideal for large sample numbers. It represents a considerable simplification of present approaches requiring DNA isolation prior to PCR amplification and will be useful in plant systematics and biotechnology, including applications such as DNA barcoding.

12.
Proc Biol Sci ; 276(1667): 2657-65, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19403534

RESUMO

The composition of isolated floras has long been thought to be the result of relatively rare long-distance dispersal events. However, it has recently become apparent that the recruitment of lineages may be relatively easy and that many dispersal events from distant but suitable habitats have occurred, even at an infraspecific level. The evolution of the flora on the high mountains of Africa has been attributed to the recruitment of taxa not only from the African lowland flora or the Cape Floristic Region, but also to a large extent from other areas with temperate climates. We used the species rich, pan-temperate genera Carex, Ranunculus and Alchemilla to explore patterns in the number of recruitment events and region of origin. Molecular phylogenetic analyses, parametric bootstrapping and ancestral area optimizations under parsimony indicate that there has been a high number of colonization events of Carex and Ranunculus into Africa, but only two introductions of Alchemilla. Most of the colonization events have been derived from Holarctic ancestors. Backward dispersal out of Africa seems to be extremely rare. Thus, repeated colonization from the Northern Hemisphere in combination with in situ radiation has played an important role in the composition of the flora of African high mountains.


Assuntos
Alchemilla/fisiologia , Carex (Planta)/fisiologia , Clima , Ecossistema , Ranunculus/fisiologia , África , Altitude , Demografia , Evolução Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...